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ABSTRACT

This final report for the grant DAAD19-99-1-0139 and the associated instrumentation grant DURIP 442510-
21338 describes research conducted both at Washington University in St.Louis and at the University of
California, Los Angeles, from 1999 to 2003.

Research has been documented in 34 publications, among which two best-paper awards (the Marr Prize,
the highest recognition in the field of Computer Vision, and the Siemens Prize with the Outstanding Paper
Award by the IEEE Computer Society) and a book, expected to appear in June 2003.

Technology firsts include the first ever system (and still the only one) for estimating three-dimensional
structure and motion of an arbitrary (static) scene in real time, and the first optimal algorithms for estimating
shape from accommodation.

Given the scale of the project, consisting of 70K$/year plus equipment funds, the results are considerable:
all the goals set forth in the original proposals have been reached, and several new projects have been initiated
that were not part of the forecast plan. Such new projects explore fundamental research that holds high
promise for applications of strategic value in the aftermath of 9/11/01, as we describe below.

Synopsis of accomplishments

In the following we list the original milestones as outlined in the original proposal, together with the publi-
cations where they are delivered, which is described in greater detail in previous interim reports and in the
cited references [24, 40, 39, 27, 38, 37, 19, 9, 11, 3, 2, 23, 34, 20, 33, 7, 12, 16, 35, 26, 10, 36, 29, 17, 8, 6,
13, 4, 21, 30, 18, 5, 25, 22]. A complete list of equipment purchased under the DURIP program is included
with the submission of this report.

Year I

Analysis Analysis of optimal algorithms for reconstructing three-dimensional structure from motion (SFM).
Convergence properties, region of attraction of the global minimum. Analysis of known local extrema
(bas-relief ambiguity, rubbery motion). Noise sensitivity. These goals were reached in year 1, and
resulted in award-winning publications [28, 22].

Algorithms Implementation of provably convergent algorithms for SFM. Implementation of simple outlier
rejection and missing data. This goal was achieved in year 1 and the algorithm was implemented
off-line. Code has been made available to the community via the web.

1



Experiments Use of pseudo real-time optical flow and feature tracking for testing implemented SFM al-
gorithms on real image sequences. Indoor and outdoor sequences tested. Error performance provided
using calibration. Tests for stability, performance and robustness. This goal was achieved in year 1,
and published in [31, 32].

Year II

Analysis Geometric configurations corresponding to local extrema. Characterization of the relationship
between local extrema and the global geometry of the optimization of SFM. Study of invariant represen-
tations. Analysis and reduction of the state-space into components that are invariant to local extrema.
This goal was achieved to completion during year 2, and has appear in print in the leading journal in
the field [2, 23].

Algorithms On-line statistical tests for outlier rejection. On-line path estimation for non-holonomic path
following. This goal was achieved during year 2, and has been presented in [4, 17].

Experiments Testing on pseudo real-time segmentation. Use of local consistency cues (2D) as well as 3D
motion cues. This goal has been vastly exceeded during year 2: the algorithm for automatic feature
detection, tracking, outlier rejection and rigid body estimation has been implemented in real time and
presented in [18]. The system we developed, the first of its kind, has been made publicly available, and
has been featured on the July 2000 issue of the EE Times [1].

Year III

Analysis Observers for variable state dimension. Non-linear reduced-order observers; observability issues.
Bounds on inference errors. This was achieved and the results published in [3].

Algorithms Implementation of a representative sample of image-based control design techniques. Thanks to
DURIP funding, we have implemented basic image-based control algorithms on a set of 3 mobile robots
(Evolution Robotics ER-1); core processing is performed on a laptop PC, including frame processing,
acquired via firewire IEEE 1394.

Experiments Vision-based navigation on a remote-controlled vehicle. Indoor and outdoor unknown and
unstructured environments. This goal has been exceeded, as the full SFM system has been implemented
on a laptop and tested both indoors and outdoors. No remote control has been necessary. Full
integration into an autonomous prototype is still under way.

In addition to achieving the milestones outlined in the original proposal, we have been able to make significant
breakthroughs in other problems that recently emerged and that were not part of the original proposal.
These include the study of the accommodation cue in vision as well as the dense estimation of 3D shape
using variational techniques implemented via numerical solution of partial differential equations (PDEs). A
list of the accomplishments on these topics follows:

Visual accommodation and shape from defocus In a series of papers published in the most prestigious
refereed conferences and journals [11, 12, 13, 14, 15, 16, 30], we have completely tackled the following
problem: given two or more images of a scene obtained with different focus settings, reconstruct the
3-D shape of the scene as well as its radiance. Furthermore, characterize the accuracy of the estimates,
both analytically and experimentally. We have presented the first optimal algorithms, some of which
are implemented in real time. Application of these technology ranges from exploration of small cavities
and lumens (e.g. in endoscopy or inspection) and true recognition, for instance of faces, based on
3-D shape rather than on pictorial information. Some of these results have been reported in previous
interim reports; new results will be outlined below.

Particle filtering Nonlinear stochastic state estimation algorithms (or “filters”) have been presented for
systems evolving on Lie groups and homogeneous spaces [6].
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Matching despite occlusion Optimal algorithms for region correspondence despite occlusions have been
introduced in [7].

Estimation of dense shape and radiance Variational techniques for estimating the 3-D shape of a scene
that do not rely on matching point features, but rather estimate a dense surface directly, have been
introduced in [19, 20, 21, 33, 36, 37, 38, 39, 40]. This novel line of work shows remarkable results and is
gathering considerabl attention from the scientific community. Some preliminary results were outlined
in prior interim report. Here we report final results on challenging sequences where no existing method
would work.

Modeling dynamic visual processes Stochastic dynamical models of visual process, such as foliage,
steam, smoke, fire, have been proposed to support visual recognition tasks. Results for dynamic
textures have been reported in [26]. These techniques place the difficult and important problem of
detecting and recognizing dynamic “events” (e.g. the presence of a fire, or a person limping) on a solid
analytical footing, and shows the first ever experimental results on this problem. We briefly describe
preliminary results below.

Multiple motion segmentation Results drawn from algebraic geometry have been crucial in deriving a
complete theory for segmenting multiple rigid motions in a sequence of images [34, 35]. For reasons of
space, we do not further describe these results, which can be accessed through the relevant publications.

Tracking deforming target A completely novel approach to the difficult problem of visual tracking of
deforming targets (where neither the shape nor the motion of the target can change over time, and
they are both unknown) has been presented in [33, 37]. The approach will be outlined in more detail
in this document.

Laboratory infrastructure and facilities

The first part of the research program was carried out while the PI was at Washington University in St.Louis.
As July 2000, the PI has relocated the laboratory at UCLA, where he is the founder and director of the
UCLA Vision Lab. The facility is hosted in about 1000 sqft of space with state of the art equipment
including a full 6-camera motion-capture system (synchronized infrared marker-sensitive cameras), three
robots (two Evolution Robotics ER-1 and a developer platform), purchased through ARO’s DURIP. In
addition, the laboratory features several PC workstations (mostly dual processors, 2GB of RAM, various
processing speeds) donated by Intel, digital camera, frame grabbers, lights, stands, motorized pan-tilt units,
embedded units (IQeye3 cameras + FPGAs + Ethernet), 802.11a, 802.11b and 802.11c wireless units etc.

The laboratory currently houses 12 full-time members: 2 postdocs (D. Cremers, A. Duci), one M.D.
pursuing his Ph.D. (G. Scarlatis), 8 Ph.D. students (staggered as follows: 2 first-year, 1 second-year, 3 third-
year, 1 fourth-year, 1 fifth-year), 1 visiting Ph.D. student (F. Guido). An additional visiting Ph.D. student
is scheduled to join the lab in late January (N. Moretto), and an additional Postdoc (R. Vidal) is expected
to join us in the spring. All members of the lab are supported on research funding.

List of instruments purchased under the DURIP contract

Enclosed with the submission of this report.

Training of graduate students, industry and government profession-
als

This project, with a budget of 70K$/year, supported part of the salary and tuition of two graduate students
through most of their Ph.D. program. Hailin Jin and Paolo Favaro, currently Ph.D. candidates at Washington
University, have successfully completed all the requirements for their doctorate, including the Qualifying
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exam and the Candidacy exam, and they are preparing to defend their dissertation sometime between
March and June of 2003.

In addition to having completed standard coursework and having performed research under my direction,
both students have demonstrated leadership abilities by supervising younger students, such as summer
interns in my lab, and also by initiating and completing research projects on their own, independent of my
supervision. Some of this work has resulted in an independent publication that lists them as sole authors
[16].

The research material developed during the course of this project is at the basis of a textbook under
advanced stages of development, expected in press in June of 2003 [24]. This material has been used to
develop a new graduate course at UCLA (CS268, Machine Perception), as well as a seminar course (CS269,
Visual Recognition and Biometrics). Also, the PI has used this material to design a short course through the
UCLA Extension on 3-D modeling and reconstruction from Video. This course, which gathered a surprising
success with over 30 participants from industry and government on its first offering, will be repeated annually
in late September.

Current sources of funding

The activities of the UCLA Vision Laboratory, directed by the PI, is currently funded by ONR (MURI),
AFOSR, DARPA (IXO), NSF (ECS, IIS), NIH, Intel and Microsoft.

Additional funding to further the results of the current projects are sought from ARO, under a pending
proposal co-authored with Prof. A. Yezzi of the Georgia Institute of Technology.

Description of research achievements during the last period (Year
III)

The last period has coincided with the perfectioning of the algorithms for recovering three-dimensional
structure from motion (SFM), both from the theoretical and the experimental points of view.

The theory, which includes methods to handle singular perturbations due to point features appearing
and disappearing, has been summarized in the IEEE Transactions PAMI [3].

That theory is at the basis of the implementation of the first ever algorithm for SFM operating in real
time. This system is under constant development, and several laboratories in the US and abroad have been
able to port our code on their system and test it independently. These include Boston University, Georgia
Tech, UC Berkeley, Oxford, Lund, Padova etc.

As promised in the last Interim Report, we have purchased two reconfigurable robots from Evolution
Robotics, INC., a Pasadena Company, and, in addition, we have received a third robot as part of their
developer network. We have implmented the structure from motion algorithms discussed in the previous
Interim reports on a portable laptop platform, and embedded them in the mobile platform to be used for
autonomous guidance algorithms in a vision-bsed control scenario. As part of a beginning AFOSR project,
we plan to implement these algorithms on mobile platform for landing and low-altitude flight in swarm
configurations.

A version of the algorithm followed by dense uncalibrated shape estimation is at the basis of novel
algorithms for 3-D terrain mapping and super-resolution image registration. Figure 1 shows the results of
applying our algorithms to enhance a small area visible from four images. As a side benefit, the three-
dimensional terrain relief is also computed. In addition, we have carried our experiments on tracking non-
rigid objects, especially human motion, further. Thanks to MURI funds, we have purchased a full 6-camera
motion capture system which we have used to acquire gait data for human subjects (walk, run, limp, skip
etc.) Results are presented in [26], and funding is currently being sought for furthening this project.
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Figure 1: Dense shape estimation and registration example. A collection of aerial images (top) can
be used to estimate a dense 3-D model, which supports a radiance function (“texture map”) that can be used
to generate novel images at an arbitrary resolution from an arbitrary viewpoint (bottom). Data courtesy of
M. Pollefeys and L. van Gool.

Selected preliminary results of new projects and future research
plans

In this section we summarize preliminary results of ongoing projects that sprung up from the current project,
which constitutes our on-going work. A proposal by the PI and his collaborator Dr. A. Yezzi from Georgia
Tech is pending with ARO and include plans to further some of these issues.

Tracking deforming targets

In this section, mostly taken from [37], we report the results obtained with our novel approach to tracking
deforming targets. The motion of a target is defined by a group action, and its deformation by a dif-
feomorphism. Both are unknown, and both are inferred from data using robust variational region-based
techniques.

Fig. 2 illustrates the difference between the motion and shape average computed under the Euclidean
group, and the affine one. The three examples show the two given shapes γi, the mean shape registered to
the original shapes, gi(µ) and the mean shape µ. Notice that affine registration allows us to simultaneously
capture the square and the rectangle, whereas the Euclidean average cannot be registered to either one, and
is therefore only an approximation.

Fig. 3 shows the results of tracking a storm. The affine moving average is computed, and the resulting
affine motion is displayed. The same is done for the jellyfish in Fig. 4.

Fig. 5 and 6 are meant to challenge the assumptions underlying our method. The pairs of shapes chosen,
in fact, are not simply local deformations of one another. Therefore, the notion of shape average is not
meaningful per se in this context, but serves to compute the change of (affine) pose between the two shapes
(Fig. 5). Nevertheless, it is interesting to observe how the shape average allows registering even apparently
disparate shapes. Fig. 6 shows a representative example from an extensive set of experiments. In some
cases, the shape average contains disconnected components, in some other it includes small parts that are
shared by the original dataset, whereas in others it removes parts that are not consistent among the initial
shapes (e.g. the tails). Notice that our framework is not meant to capture such a wide range of variations.
In particular, it does not possess a notion of “parts” and it is neither hierarchical nor compositional. In the
context of non-equivalent shapes (shapes for which there is no group action mapping one exactly onto the
other), the average shape serves purely as a support to define and compute motion in a collection of images
of a given deforming shape.
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Figure 2: Euclidean (top) vs. affine (bottom) registration and average. For each pair of objects
γ1, γ2, the registration g1(µ), g2(µ) relative to the Euclidean motion and affine motion is shown, together
with the Euclidean average and affine average µ. Note that the affine average can simultaneously “explain”
a square and a rectangle, whereas the Euclidean average cannot.

Fig. 7 shows the results of simutaneously segmenting and computing the average motion and registration
for 4 images from a database of magnetic resonance images of the corpus callosum.

Finally, Fig. 8 shows an application of the same technique to simultaneously register and average two 3D
surfaces. In particular, two 3D models in different poses are shown. Our algorithm can be used to register
the surfaces and average them, thus providing a natural framework to integrate surface and volume data.

Stereoscopic segmentation

In this project we are developing techniques for inferring shape and radiance of scenes under assumptions that
prevent current stereo algorithms to work. These include scenes with no visible “features” (photometrically
distinct points), or scenes with dense “texture”, that causes local image matching methods to be trapped in
local minima. The discussion follows the theory presented in [38].

In figure 9 we show 4 of 22 calibrated views of a scene meant to illustrate the domain of applicability
of our algorithm. The scene contains three objects: two shakers and the background. The shakers exhibit
very little texture (making local correspondence ill-posed), while the background exhibits very dense texture
(making local correspondence prone to local minima). In addition, the shakers have a dark but shiny surface,
that reflects highlights that move relative to the camera since the scene is rotated while the light is kept
stationary. In figure 10 we show the surface evolving from a large ellipse that neither contains nor is contained
in the shape of the scene, to a final solid model. Notice that the parts of the initial surface evolve outwards,
while parts evolve inwards in order to converge to the final shape. This bi-directionality is a feature of our
algorithm, which is not shared - for instance - by shape carving methodologies. There, once a pixel has been
deleted, it cannot be retrieved. In figure 11 we show the final result from various vantage points. In figure 12
we show the final segmentation in some of the original views (top). We also show the segmented foreground
superimposed to the original images. Two of the 22 views were poorly calibrated, as it can be seen from the
large reprojection error. However, this does not significantly impact the final reconstruction, for there is an
averaging effect by integrating data from all views. In figure 13 we show an image from a sequence of views
of a watering can, together with the initial surface. The estimated shape is shown in figure 14 The results
shown were obtained using a C++ implementation running on a 700MHz laptop. For 22 640× 480 images
and a cubic grid of 128× 128× 128 the algorithm takes about 20 minutes to converge (tested by threshold
on the iteration residual).
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Figure 3: Storm (first row) a collection of images from EUMETSAT c©2001, affine motion of the storm
based on two adjacent time instances, (bottom) moving average of order 1.

Dense 3D shape estimation with with challenging photometry

In this section we report some preliminary experiments on a novel approach to jointly estimate dense shape
and non-Lambertian photometry. This allows us to reconstruct objects tha have shiny or translucent surfaces,
a case for which all previous passive vision algorithms are at a loss. The algorithm is currently being patented,
and its description has been submitted for publication. In this section we test the algorithm on the two objects
shown in Figure 16, both courtesy of (whitheld during review). Van Gogh is made of polished metal, and
is highly specular. Pseudo-ground truth has been generated by laser scanning followed by manual mesh
polishing (Figure 17). Buddha is actually a synthetic scene, meant to simulate translucent material. Ground
truth is available (Figure 20). In Figure 17 we show the estimates of shape produced by the algorithm
described in [7], together with the estimates obtained by assuming a diffuse + specular reflection model,
both compared with pseudo ground truth, obtained with a laser scanner. Our estimate is obviously not as
crisp as the ground truth, but it does capture important details on the face. The evolution of the estimate
of shape can be seen in Figure 21, as well as in the uploaded movies.

In Figure 22 we show synthetic images generated using the radiance map. Note that the specularities
move with the viewpoint. This is also visible in the uploaded movies. In Figure 18 we show a few synthetic
images compared with the real images from the same vantage point. In Figure 20 we show the estimated
shape for the Buddha in Figure 16. In this case, ground truth is available since the images are synthetic. We
also show the results obtained by assuming Lambertian reflection. In Figure 19 we show images synthesized
from the model, compared with corresponding true images. In Figure 21 we show the evolution of shape,
and in Figure 22 we show several novel views.
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Figure 4: Jellyfish. Affine registration (top), moving average and affine motion (bottom) for the jellyfish.
Last row: affine scales along x and y, and rotation about z during the sequence.

Figure 5: Registering non-equivalent shapes. Left to right: two binary images representing two differ-
ent shapes; affine registration; corresponding affine shape; approximation of the original shapes using the
registration of the shape average based on the set-symmetric difference. Results for the signed distance score
are shown in Fig. 6.
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Figure 6: Biological shapes For the signed distance score, we show the original shape with the affine shape
average registered and superimposed. It is interesting to notice that in some cases the average shape is
disconnected.
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Figure 7: Corpus Callosum (top row) a collection of (MR) images from different patients (courtesy of N.
Dutta and A. Jain), further translated, rotated and distorted to emphasize their misalignment, alignment
and (bottom) average template corresponding to the affine group.

Figure 8: 3D Averaging and registration (left) two images of 3D models in different poses (center)
registered average (right) affine average. Note that the original 3D surfaces are not equivalent. The technique
presented allows “stitching” and registering different 3D models in a natural way.
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Figure 9: Original “salt and pepper” sequence (4 of 22 views).

Figure 10: (top) Rendered surface during evolution (6 of 800 steps). Notice that the initial surface is neither
contained nor contains the actual scene. (Bottom) segmented image during the evolution from two different
viewpoints.

Figure 11: Final estimated surface, seen from several viewpoints. Notice that the bottoms of the salt and
pepper shakers are flat, even though no data was available. This is due to the geometric prior, which in the
absence of data results in a minimal surface being computed.
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Figure 12: (Top) image segmentation for the salt and pepper sequence. (bottom) Segmented foreground
superimposed to the original sequence. The calibration in two of the 22 images was dramatically wrong.
However, the effect is mitigated by the global integration, and the overall shape is only marginally affected
by the calibration errors.

Figure 13: The “watering can” sequence and the initial surface. Notice that the initial surface is not simply
connected and does not include and is not included by the shape. In order to capture a hole it is necessary
that it intersects the initial surface. One way to guarantee this is to start with a number of small surfaces.
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Figure 14: Final estimated shape for the watering can. The two initial surfaces have merged. and the
topology and geometry of the watering can has been correctly captured.

Figure 15: (top) Rendered surface during evolution for the watering can.
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Figure 16: Scenes with strong specularities (left) or made of translucent materials with no distinct point
features are a challenge to most stereo algorithms.

Figure 17: Estimated shape (top), compared with pseudo-ground truth (bottom), obtained with a 3D laser
scanner and manual mesh cleaning. Our results improve those obtained with a purely diffuse + specular
model (middle).
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Figure 18: Synthetic images using the estimated radiance tensor (top) compared with the true images taken
from the same vantage point.

Figure 19: Synthetic images obtained with the estimated radiance tensor field (top) compared with the true
images taken from the same vantage point.
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Figure 20: Estimated shape (top), compared with ground truth (bottom). Also compare with the results
obtained by assuming Lambertian reflection (middle).

Matching with missing parts and occlusions

In this section we report some preliminary experiments, documented in [7], to match image structures and
shapes despite missing parts.

Modeling and recognition of human gaits

In this section we give some very preliminary results on modeling human gaits using stochastic dynamical
systems. A stochastic model is identified from data, acquired using DURIP funding. The model is then
simulated in order to ascertain whether it captures the crucial statistical features, for instance whether it
allows to visually discriminate between a normal walk and limping. We are currently in the process of
studying techniques to exploit the higher-order statistics inferred from data sequences in order to recognize
walking gaits. The ultimate goal is to identify classes of motions (e.g. walking vs. running vs. limping) as
well as individuals from their walking gaits.
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Figure 21: Shape evolution for Van Gogh (top) and Buddha (bottom).
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Figure 26: Letter “A” Evolution. (Top) evolution of the complete shape for t = 0, . . . , 20. (Bottom)
evolution of g3(µ) for t = 0, . . . , 20.
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Figure 27: Faces (Top) a collection of images of the same face in different poses with different missing parts.
The support of the missing parts is unknown. (Middle) similarity group, visualized as a “registered” image.
(Bottom) estimated template corresponding to the similarity group (“complete image”).
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Figure 28: Face evolution. (Top) evolution of the complete image for t = 0, . . . , 189. (Bottom) evolution
of g5(µ) for t = 0, . . . , 189.
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Figure 29: Corpus Callosum. (Top) a collection of images of the same corpus callosum in different poses
with different missing parts. The support of the missing parts is unknown. (Middle) similarity group,
visualized as a “registered” image. (Bottom) estimated template corresponding to the similarity group
(“complete image”).
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Figure 30: Corpus Callosum evolution. (Top) evolution of the complete image for t = 0, . . . , 199.
(Bottom) evolution of g2(µ) for t = 0, . . . , 199.
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Figure 31: Histogram of the values assumed by the first component of the residual of the learning applied
to the walk sequence
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Figure 32: Motion sequences for walking. First row is the original walk data, second row is the synthesized
sequence.
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Figure 33: Motion sequences for running. First row original data, second row synthesized motion.
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